
February 2009 www.stsc.hill.af.mil 9

The Lockheed Martin Aeronautics
Company C-5M Program is involved

in the upgrade of aircraft engines and
associated software systems to improve
the overall aircraft reliability. Several C-5M
project personnel had successfully used
the software cost reduction (SCR) require-
ment modeling method to develop
requirements for the C-130J Avionics
System [1]. Requirement-based modeling
develops precise behavioral requirements
and formalizes interface information earli-
er in the development life cycle to support
the design and implementation process.
The C-5M Program implemented several
related strategies for improving the speci-
fication, design, and implementation of
the avionics software. These strategies
supported on-schedule releases of major
functional blocks with a significant reduc-
tion in post-release problem reporting and
correction. This article focuses on the
requirement specification process im-
provements realized through the use of
requirement modeling and early require-
ment validation.

A requirement model is a formal specifi-
cation of the required functional behavior
of a component specified in terms of the
interfaces to the component. The model-
ing process, supported by automated
analysis provided in the modeling tool,
helps detect requirement and interface
problems. In addition, system engineers
use a requirement simulator to validate
modeled requirements prior to transfer to
the designers and implementers. A require-
ment simulator is a tool that loads require-
ment models and supports scenario exe-
cution against the functional behavior
captured in the model through a graphical
user interface (GUI). A scenario is a
sequence of input events that result in a
corresponding sequence of internal state
and output changes. A scenario can repre-
sent high-level system use cases or low-
level component interactions. Unexpected

state or outputs observed during the sce-
nario simulation are often results of
requirement defects.

The modeling process and require-
ment simulation exposed a large number
of requirement defects. Fortunately, these
defects were identified early in the project
and corrected before the software imple-
mentation process. Integration problem
reports (IPRs) provided a key measure of
the defects against requirements, design,
and implementation. The number of IPRs
was reduced significantly when compared
to a prior and similar project, the C-5
Avionics Modernization Program (AMP).
This article provides IPR measurement
and tracking data that substantiates the
claimed process improvements and pro-
gram benefits. This data supports the con-
clusion that the C-5 Program process—
when compared to the C-5 AMP—detect-
ed defects earlier, had about half of the
total number of defects, and (on average)
corrected the defects twice as fast.

The C-5M Program will continue new

development releases for the next several
years. The C-5 AMP, now in sustainment,
plans to apply the improved processes
successfully applied by the C-5M Pro-
gram. Investigations by the C-5 AMP sug-
gest that large or complex upgrades can
be developed and maintained more cost-
effectively using the improved processes
described in this article.

Process Overview
The C-5M project operates as a physically
co-located integrated product team.
Figure 1 provides a conceptual overview
of the roles and flow of the artifacts that
ultimately result in the target software; it
also represents both the traditional
process steps and roles (top of the figure),
and modeling extensions (bottom of the
figure) used to develop the C-5M soft-
ware. The system engineer develops textu-
al requirements as well as any other type
of analytical model that is captured in a
software requirement specification (SRS).
The SRS requirements are developed

Requirement Modeling for the C-5 Modernization Program©

This article outlines the approach and benefits of a requirement-based modeling effort for the Lockheed Martin Aeronautics
Company C-5 Modernization (C-5M) Program to upgrade the aircraft’s engines and improve the overall reliability of the
aircraft. Requirement-based modeling resulted in more consistent, complete, and precise requirements and interface informa-
tion to support the design and implementation process. Systems engineers used simulations to validate requirement models and
detected a large number of requirement defects that were corrected well before software implementation.

Steven D. Allen, Mark B. Hall, Verlin Kelly, and Mark D. Mansfield
Lockheed Martin Aeronautics Company

Dr. Mark R. Blackburn
Systems and Software Consortium

© 2009 Systems and Software Consortium, NFP. All rights
reserved.

Traditional System/Software Development ProcessesTraditional System/Software Development Processes

Condition Tables

Event Tables

Mode Tables

Conditi on Tables

Event Tables

Mode Tables
Monitored

(Input)
Variables

Controlled
(Output)
Variables

Term
Variables

Common
Conditions,

Events & Modes

Modeling Extensions

Lead Software Architect Designer/Implementer

Code and Target Builds

System/Requirements
Engineer

Requirement
Simulator

SDD

(

SDD ICD

Software
Requirements

Modeler

SRS

Figure 1: Process Roles and Flow

Software and Systems Integration

10 CROSSTALK The Journal of Defense Software Engineering February 2009

using a requirement specification language
(RSL) that has a structured syntax and
restricted set of verbs (e.g., acquire, vali-
date, provide, and derive). The RSL was
developed to complement the SCR mod-
eling method. In parallel, there is a contin-
uous requirement flow-down process. The
lead software architect identifies the com-
ponents of the software architecture and
works with the software requirements
modelers to formalize the requirements
and associated interfaces into models.

The software requirements modeler
develops requirement models from the
SRS and interface control document
(ICD) using a modeling tool that supports
the SCR method. Models capture behav-
ioral requirement and interface informa-
tion (e.g., inputs, outputs, types, and
ranges) extracted from an ICD. The mod-
eling process often identifies requirement
or interface problems that must be
resolved through interaction between the
system engineer or software architect. For
example, interface specifications were cap-
tured in a database that is shared by the
project team, including subcontractors,
but they were not always complete or con-
sistent during the early part of the pro-
gram (e.g., the first 100 days). The require-
ment modeling process and associated
tools force the interface information to be
complete and consistent. Additional prob-
lems or anomalies are identified by the
system engineers through requirement
simulation of the models. Validated
requirement models are linked to the soft-
ware design document (SDD). The
designers and implementers work directly
from the SDD, requirement models, and
interfaces to implement the code. These
modeling-related extensions to the
process help to improve the overall per-
formance of the team. Better require-
ments and interface documentation allow
software designers to focus on the detailed
design and implementation of the code
rather than chasing requirement issues or
making assumptions that can result in
costly rework.

Interface-Driven Requirement
Modeling
SCR is a table-based modeling method
that has been effective and easy to learn
for most engineers [2]. The SCR modeling
language has a well-defined syntax and
semantics allowing for a precise and tool-
analyzable specification of the required
behavior. Models represent the required
functionality of a component using tables
to relate monitored variables (inputs) to
controlled variables (outputs), as reflected

in Figure 1. There are three basic types of
tables: 1) mode transition tables, 2) event
tables, and 3) condition tables. A mode tran-
sition table is a state machine, where related
system states are called system modes, and
the transitions of the state machine are
characterized by events. An event occurs
when any system entity changes value. A
condition is a predicate characterizing a sys-
tem state. A term is any function defined in
terms of input variables, modes, or other
terms. The SCR tables can be combined
to specify complex relationships between
monitored and controlled variables using
mode or terms variables. This allows com-
mon conditions, events, and modes to be
defined once and referenced multiple
times.

Model developers should employ a
goal-oriented approach and work back-
wards to specify functions and constraints
for each output (controlled variable or
term) of the component, using the fol-
lowing general guidelines:
• Create a table that assigns each com-

puted value for the table output. The
value can be specified using a simple
assignment or complex function. This
corresponds with the RSL action verb
provide.

• Use a condition table to describe rela-
tionships between an output (or term)
if the relationships are continuous
over time. Identify all conditions that
must be TRUE for each output assign-
ment. Conditions relate to the RSL
verb validate, because they are con-
straints on the inputs.

• Use an event table to describe relation-
ships between an output (or term) if
the relationships are defined at a spe-
cific point in time. Define the events
and optional guard conditions that
trigger the event for each output
assignment.

• Use a mode transition table to describe
relationships between an object if the
relationship for a mode is defined for a
specific interval of time (set of related
system states). Identify the set of
modes and define the event associated
with each source-to-destination transi-
tion of the model transition table.

• If there are common conditions that
are related to constraints (i.e., condi-
tions or events) of functions of two or
more outputs (or terms), then define a
term table that can be referenced by
other tables. Term reference can be
performed in a table assignment, con-
dition, or event. Term variables corre-
spond to the RSL verb derive, as terms
are intermediate variables that can be
referenced by other tables.
See [3] for more details on the inter-

face-driven modeling approach.

Requirement Validation
The modeling process forces the cus-
tomer requirements to be translated into
a language understood by the engineers.
This formalization ensures common
understanding between the system re-
quirements engineer, lead software archi-
tect, and requirements modelers across
the system and software interface bound-
ary. Despite this, the system engineers
responsible for developing textual
requirements were initially reluctant to
use the requirement simulator that was
specifically designed to support the SCR
method. However, after developing a few
scenarios, they realized that their under-
standing of the requirements could be
incomplete or incorrect, often due to the
complexity of the system. This revised
perspective was necessary since they had
the domain knowledge to judge the cor-
rectness of the modeled requirements,
making their input into the validation
process critical.

The typical process for validating a
scenario requires the system engineer to
enter input values associated with a
sequence of events using the GUI simula-
tor. After each input, the system engineer-
ing observes and validates system outputs
and internal states (e.g., terms). Model
issues are exposed when sequences of
events do not result in outputs that the
system engineer expects for a particular
scenario. The most common types of

“Better requirements
and interface

documentation allow
software designers to

focus on the
detailed design and

implementation of the
code rather than chasing

requirement issues or
making assumptions

that can result in
costly rework.”

Requirement Modeling for the C-5 Modernization Program

February 2009 www.stsc.hill.af.mil 11

problems identified through requirement
validation result from inconsistencies in
related model condition, mode, or event
tables. Similar inconsistencies exist within
textual requirements specifications, but
the inconsistencies are often difficult to
identify through manual inspection and
reviews as the related requirement can
often be separated in an SRS document by
tens or hundreds of pages. Requirements
models formally link the related require-
ments (as reflected by Figure 1), and tools
can help detect inconsistencies or issues
(e.g., logical contradictions, potential
divide-by-zero situation) through simula-
tion and automated analysis.

Measurement Data
The C-5M avionics software was devel-
oped in incremental blocks with each
release of a software block occurring on-
schedule and with full functionality. These
fully functional, on-time software releases
provide evidence justifying the improved
process. However, IPR-related measure-
ment data tracked on both the C-5M
Program and the C-5 AMP provides an
objective way to compare the program
processes. Ideally, a program should have
objectives such as to: 1) minimize the total
number of IPRs, 2) detect IPR-related
defects early, and 3) reduce the time to
correct any IPR-related defect. The fol-
lowing IPR measurement data provides
comparative data that relates to the stated
objectives. Four base measures and one
derived measure are used to substantiate
the process improvements of the C-5M
Program:
• Base measure: Number of days since

first program IPR (i.e., referred to as
program start).

• Base measure: Number of IPRs.
• Base measure: Date the IPR opened.
• Base measure: Date the IPR closed.
• Derived measure: Average days to

approval = Date the IPR closed - Date
the IPR opened.
The C-5 measurement analyst noted

that a C-5M IPR was often more detailed
and specific than a C-5 AMP IPR, due to
the more detailed and precise requirements
defined for C-5M using the improved
processes. For example, a C-5M IPR might
state very specific details such as:

the color of the pressure
readout should be red, not
yellow, when the pressure
exceeds the pressure
threshold limit.

For the C-5 AMP, a similar IPR might
state:

the warning messages have
invalid color settings.

As a result, the IPRs on C-5 AMP
often had a broader scope relative to C-
5M IPRs and required more time to inves-
tigate and implement the necessary cor-
rective action, sometimes to the point
where a single C-5 AMP IPR was equiva-
lent in scope to two or more C-5M IPRs.

The next section provides measure-
ment data that supports this claim. For
example, the number of days to approve
an IPR for the C-5 AMP was at some
times almost three times longer than the
number of days for an IPR-approval for
the C-5M Program. Note that the num-

bers of Total IPRs and Days To Approve
IPRs are not included in the measurement
data in order to protect program-privi-
leged information.

Measurement Analysis
Figures 2, 3, and 4 (on the following page)
compare C-5M data against C-5 AMP
measurement data in 100-day increments
from the start of each respective pro-
gram1. Figure 2 shows the total number of
accumulated IPRs. The number of IPRs
for the C-5M Program was slightly higher
than the C-5 AMP through the first 400
days of the program. The number of C-5
AMP IPRs increases significantly at about
the 500th day of the program; by the
800th day, the number of C-5 AMP IPRs
is about double the number of C-5M
IPRs. Figure 2 shows a linear prediction
that the expected number of IPRs for the
C-5M Program over the next 200 days will
total about a third of the number of IPRs

for the C-5 AMP; this prediction is sub-
stantiated by the measurement data shown
in Figure 3.

Figure 3 shows the number of IPRs
added during each 100-day period (e.g.,
IPRs from 300th day to the 400th day).
This view of the data shows that more
IPRs were detected early in the C-5M
Program. This suggests that requirement
modeling and validation helped to detect
defects early. Figure 3 also shows that
starting at day 500, the IPRs for the C-5
AMP increased significantly. The number
of C-5 AMP IPRs was nearly double the
number of IPRs for the C-5M Program at
the same point in time. The C-5M IPRs
discovery rate continues to remain signifi-
cantly lower than the C-5 AMP defects
from day 500 through day 800.

Figure 4 provides data on the number
of days required to approve a system
change that corrects an IPR-related
defect. The IPR approval process for the
C-5M Program was longer at the begin-
ning. The process defined in this article
was not completely refined during C-5M’s
first 100 days, and additional improve-
ments were being put into place during the
early days of program execution.
However, the data indicates that the aver-
age approval period continued to decline
through day 800 of the program. The
combined data indicates that at 800 days,
the number of detected IPRs by the C-5M
Program is less but the time to correct the
defect is significantly shorter than that for
the C-5 AMP. The combined data sup-
ports the conclusion that the requirement
modeling and validation provides a signif-
icant improvement in early defect identifi-
cation, faster defect removal, and correc-
tion.

Leveraging Models
Approximately 90 percent of the detailed
software design descriptions rely on the
requirement models. The requirement
model is linked to the SDD rather than
having the design specified in-text. Models
represent both high-level and low-level
requirements (i.e., derived requirements).
Unusual or complex designs are docu-
mented in the SDD using text, flow dia-
grams, or other engineering drawings (as
needed). This is another process efficiency
gained through leveraging the requirement
modeling process. The model provided a
formal, precise statement of the require-
ments that could be referenced directly in
the SDD.

Common modeling patterns—such as
data retrieval, data validation, and filter-
ing—were identified and evolved for the
different software components. The system

“The modeling process
forces the customer
requirements to be
translated into a

language understood by
the engineers.This

formalization ensures
common understanding

... across the system
and software

interface boundary.”

Software and Systems Integration

12 CROSSTALK The Journal of Defense Software Engineering February 2009

engineer and lead software modeler validat-
ed the patterns that were captured as model
templates. The novice team members
began development of requirement models
using model templates. The model tem-
plates helped to promote additional consis-
tency into the modeling process.

Summary
This article describes the approach and
benefits derived through the use of
requirement modeling for the C-5M Pro-
gram. Requirement modeling helped to
develop better requirements and interface
information to support the design and
implementation process. The systems
engineers used requirement simulations of
the models to validate the correctness and
consistency of the requirements. The
requirement modeling and simulation
processes uncovered a large number of
requirement defects prior to software
implementation. In addition, measurement
data substantiates the claimed process
improvements and program benefits.
Measurement data supports the conclu-
sion that the C-5M Program process
detected defects earlier, had about one-half
of the total number of defects, and on
average corrected the defects twice as fast
as the C-5 AMP. Also described were the
substantial benefits seen by the Lockheed
Martin Aeronautics Company and its cus-
tomer from early validation of the systems
and software requirements. The significant
benefits realized on the C-5M Program
have resulted in plans to incorporate this
requirement modeling process into the C-
5 AMP sustainment efforts for large and
complex software-system upgrades.u

References
1. Faulk, Stuart, et al. Experience

Applying the CoRE Method to the
Lockheed C130J. Proc. of the Ninth
Annual Conference on Computer
Assurance, IEEE 94CH34157.
Gaithersburg, MD, June 1994: 3-8.

2. Kelly, V., et al. Requirements Testabil-
ity and Test Automation. Proc. of the
Lockheed Martin Joint Symposium.
June 2001.

3. Blackburn, Mark R., Robert D. Busser,
and Aaron M. Nauman. “Interface-
Driven, Model-Based Test Automa-
tion.” CrossTalk May 2003 <www.
stsc.hill.af.mil/crosstalk/2003/05/
blackburn.html>.

Note
1. At the request of Lockheed Martin

management, the horizontal line val-
ues for Figures 2, 3, and 4 have been
removed.

100 200 300 400 500 600 700 800 900 1000

Days Into Program

D
e

lt
a

IP
R

s

C-5 AMP Delta

C-5M Delta

C-5M First FlightC-5 AMP First Flight

100 200 300 400 500 600 700 800 900 1000

Days Into Program

D
e

lt
a

IP
R

s

C-5 AMP Delta

C-5M Delta

C-5M First FlightC-5 AMP First Flight C-5M First FlightC-5 AMP First Flight

100 200 300 400 500 600 700 800 900 1000

Days Into Program

D
a
y
s

to
A

p
p

ro
v
e

a
n

IP
R

C-5 AMP-Approval

C-5M-Approval

C-5M First FlightC-5 AMP First Flight

100 200 300 400 500 600 700 800 900 1000

Days Into Program

D
a
y
s

to
A

p
p

ro
v
e

a
n

IP
R

C-5 AMP-Approval

C-5M-Approval

C-5M First FlightC-5 AMP First Flight C-5M First FlightC-5 AMP First Flight

Figure 4: Average Days to IPR Approval

100 200 300 400 500 600 700 800 900 1000

Days Into Program

D
e

lt
a

IP
R

s

C-5 AMP Delta

C-5M Delta

C-5M First FlightC-5 AMP First Flight

100 200 300 400 500 600 700 800 900 1000

Days Into Program

D
e

lt
a

IP
R

s

C-5 AMP Delta

C-5M Delta

C-5M First FlightC-5 AMP First Flight C-5M First FlightC-5 AMP First Flight

100 200 300 400 500 600 700 800 900 1000

Days Into Program

D
a
y
s

to
A

p
p

ro
v
e

a
n

IP
R

C-5 AMP-Approval

C-5M-Approval

C-5M First FlightC-5 AMP First Flight

100 200 300 400 500 600 700 800 900 1000

Days Into Program

D
a
y
s

to
A

p
p

ro
v
e

a
n

IP
R

C-5 AMP-Approval

C-5M-Approval

C-5M First FlightC-5 AMP First Flight C-5M First FlightC-5 AMP First Flight

Figure 3: Delta IPRs vs. Days Into Program

Total IPRs versus Days

100 200 300 400 500 600 700 800 900 1000

Days Into Program

To
ta

l
IP

R
s

C-5 AMP

C-5M

C-5M First FlightC-5 AMP First Flight C-5M First FlightC-5 AMP First Flight

AMPC-

C-5M

5 PrediPredicted
C-5M Predicted

C-5 AMP
C-5M

Figure 2: IPRs vs. Days Into Program

Requirement Modeling for the C-5 Modernization Program

February 2009 www.stsc.hill.af.mil 13

About the Authors

Mark R. Blackburn, Ph.D., is a Systems
and Software Consortium fellow and co-
inventor of the T-VEC (also known as
test-vector) system. He has more than 20
years of software systems engineering
experience, spending most of his time
helping companies adopt model-driven
engineering tools and methods. Blackburn
is a frequent speaker at conferences and
symposia, and has authored more than 70
papers covering a broad spectrum of top-
ics such as modeling, verification, soft-
ware safety, security, reliability, and mea-
surement. He has a bachelor’s degree in
mathematics from Arizona State Univer-
sity, a master’s degree in mathematics
from Florida Atlantic University, and a
doctorate in information technology from
George Mason University.

Systems and Software
Consortium
2214 Rock Hill RD
Herndon, VA 20170
Phone: (703) 742-7136
Fax: (703) 742-7350
E-mail: blackburn@software.org

Steven D. Allen is a staff engineer with
the Lockheed Martin Aeronautics Com-
pany. He has more than 24 years of expe-
rience in the analysis, design, and develop-
ment of software for integrated software
subsystems. In his role over the last few
years as a requirements engineer for the
mission processing subsystem of the
C-5M Program, Allen has been active in
the process, procedures, and use of cur-
rent software tools to clearly define and
validate the software system requirements
through the use of requirement modeling,
simulation, and verification techniques.

Mark B. Hall is a senior staff engineer
with the Lockheed Martin Aeronautics
Company. He has more than 20 years of
experience in the analysis, design, and
development of software for integrated
avionics. As the software architect for the
mission processing subsystem of the C-
5M Program, Hall has been active in
process and procedures to clearly define
the software requirements and validate
them through the use of modeling and
simulation. He has a bachelor’s degree
electrical engineering from Southern
Polytechnic State University and an MBA
from Kennesaw State University.

Verlin Kelly is a staff specialist for the
Lockheed Martin Aeronautics Company
and has 41 years of experience in embed-
ded systems and software and automated
support systems. He has developed soft-
ware engineering training curriculum and
courses as well as co-authored presenta-
tions to the Systems and Software Tech-
nology Conference on “Quantitatively
Managing Multi-Company Software
Teams” and “Requirement Testability and
Test Automation.” Kelly has a master’s
degree in operational mathematics from
the University of Texas at Arlington
(UTA) and a bachelor’s degree in physics
and mathematics from Baylor University.
He is involved in system/software Unified
Modeling Language development and
automated testing and has served on the
industry advisory council for the comput-
er science and engineering departments at
the UTA and Texas Christian University.

Mark D. Mansfield is a staff engineer
with the Lockheed Martin Aeronautics
Company. He has more than 10 years of
experience in the analysis, design, and
development of software for integrated
avionics. In his role over the last few years
as the systems engineer for the mission
processing subsystem of the C-5M
Program, Mansfield has been active in the
process and procedures to clearly define
the system and software requirements and
to validate them through the use of mod-
eling and simulation. He has a bachelor’s
degree in aeronautics from Embry-Riddle
Aeronautical University.

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

COMING EVENTS

March 31-April 2

Spring 2009 Software Test

& Performance

San Mateo, CA

www.stpcon.com

April 1-4

2nd International Conference on

Software Testing, Verification, and

Validation

Denver, CO

http://bitterroot.vancouver.wsu.edu/

icst2009

April 6-8

DTIC 2009

Alexandria, VA

www.dtic.mil/dtic/announcements/

conference.html

April 6-9

2009 NanoTechnology

for Defense Conference

Burlingame, CA

www.usasymposium.com/nano/

default.htm

April 20-23

21st Annual Systems and Software

Technology Conference

Salt Lake City, UT

www.sstc-online.org

April 20-24

DISA Customer Partnership Conference

Anaheim, CA

www.afcea.org/events/disa/landing.asp

